↓ Skip to main content

Using a linked database for epidemiology across the primary and secondary care divide: acute kidney injury

Overview of attention for article published in BMC Medical Informatics and Decision Making, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
56 Mendeley
Title
Using a linked database for epidemiology across the primary and secondary care divide: acute kidney injury
Published in
BMC Medical Informatics and Decision Making, July 2017
DOI 10.1186/s12911-017-0503-8
Pubmed ID
Authors

M. Johnson, H. Hounkpatin, S. Fraser, D. Culliford, M. Uniacke, P. Roderick

Abstract

NHS England has mandated the use in hospital laboratories of an automated early warning algorithm to create a consistent method for the detection of acute kidney injury (AKI). It generates an 'alert' based on changes in serum creatinine level to notify attending clinicians of a possible incident case of the condition, and to provide an assessment of its severity. We aimed to explore the feasibility of secondary data analysis to reproduce the algorithm outside of the hospital laboratory, and to describe the epidemiology of AKI across primary and secondary care within a region. Using the Hampshire Health Record Analytical database, a patient-anonymised database linking primary care, secondary care and hospital laboratory data, we applied the algorithm to one year (1st January-31st December 2014) of retrospective longitudinal data. We developed database queries to modularise the collection of data from various sectors of the local health system, recreate the functions of the algorithm and undertake data cleaning. Of a regional population of 642,337 patients, 176,113 (27.4%) had two or more serum creatinine test results available, with testing more common amongst older age groups. We identified 5361 (or 0.8%) with incident AKI indicated by the algorithm, generating a total of 13,845 individual AKI alerts. A cross-sectional assessment of each patient's first alert found that more than two-thirds of cases originated in the community, of which nearly half did not lead to a hospital admission. It is possible to reproduce the algorithm using linked primary care, secondary care and hospital laboratory data, although data completeness, data quality and technical issues must be overcome. Linked data is essential to follow the significant proportion of people with AKI who transition from primary to secondary care, and can be used to assess clinical outcomes and the impact of interventions across the health system. This study emphasises that the development of data systems bridging across different sectors of the health and social care system can provide benefits for researchers, clinicians, healthcare providers and commissioners.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 27%
Student > Ph. D. Student 6 11%
Student > Bachelor 6 11%
Student > Master 4 7%
Student > Doctoral Student 3 5%
Other 8 14%
Unknown 14 25%
Readers by discipline Count As %
Medicine and Dentistry 14 25%
Nursing and Health Professions 7 13%
Social Sciences 6 11%
Psychology 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 7 13%
Unknown 16 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 July 2017.
All research outputs
#13,209,924
of 22,988,380 outputs
Outputs from BMC Medical Informatics and Decision Making
#928
of 2,003 outputs
Outputs of similar age
#151,898
of 312,560 outputs
Outputs of similar age from BMC Medical Informatics and Decision Making
#20
of 43 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,003 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,560 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.