↓ Skip to main content

Does adding risk-trends to survival models improve in-hospital mortality predictions? A cohort study

Overview of attention for article published in BMC Health Services Research, July 2011
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
14 Mendeley
Title
Does adding risk-trends to survival models improve in-hospital mortality predictions? A cohort study
Published in
BMC Health Services Research, July 2011
DOI 10.1186/1472-6963-11-171
Pubmed ID
Authors

Jenna Wong, Monica Taljaard, Alan J Forster, Carl van Walraven

Abstract

Clinicians informally assess changes in patients' status over time to prognosticate their outcomes. The incorporation of trends in patient status into regression models could improve their ability to predict outcomes. In this study, we used a unique approach to measure trends in patient hospital death risk and determined whether the incorporation of these trend measures into a survival model improved the accuracy of its risk predictions.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Switzerland 1 7%
United Kingdom 1 7%
Iran, Islamic Republic of 1 7%
Vietnam 1 7%
Unknown 10 71%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 21%
Student > Ph. D. Student 3 21%
Researcher 2 14%
Student > Postgraduate 1 7%
Other 1 7%
Other 4 29%
Readers by discipline Count As %
Medicine and Dentistry 5 36%
Environmental Science 2 14%
Agricultural and Biological Sciences 2 14%
Unspecified 2 14%
Computer Science 1 7%
Other 2 14%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2011.
All research outputs
#10,995,294
of 12,372,945 outputs
Outputs from BMC Health Services Research
#3,795
of 4,083 outputs
Outputs of similar age
#82,436
of 92,247 outputs
Outputs of similar age from BMC Health Services Research
#27
of 29 outputs
Altmetric has tracked 12,372,945 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,083 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 92,247 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.